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A recent paper in this Journal by Bruce Hobbs, Klaus Regenauer-Lieb and Alison Ord [Hobbs, B., Rege-
nauer-Lieb, K., Ord, A., 2008. Folding with thermal–mechanical feedback. Journal of Structural Geology
30, 1572–1592] presents an alternative theory to the traditional Biot-Ramberg theory for folding of
viscous rocks that involves non-equilibrium thermodynamics and thermal–mechanical feedback. The
authors convey a strong message throughout their paper that the folds produced by this theoretical and
numerical modelling are geologically realistic and provide a better explanation for many natural folds
than the traditional theory. They promise the same approach for boudinage, and present this folding
paper as part of a ‘‘unified framework for rock deformation processes’’. Readers of the Journal of Structural
Geology might be led to conclude that this paper provides a good alternative model for folding of rocks.
Our discussion will disagree, on four counts.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.
1. Folding of a single layer

Hobbs et al. (2008) provide a comprehensive review of folding
theory, but one that exclusively addresses folding of a single layer in
a quasi-infinite matrix. They usefully examine differences accord-
ing to the boundary conditions of constant force, constant velocity,
constant strain rate and of both viscous and viscoelastic media: yet,
extraordinarily, they pay no attention to justifying using a single
layer folding model in support of their general argument. Their
Discussion begins: ‘‘This paper has been concerned with the
deformation of layered rocks .’’. This is not strictly true: all their
theory, and most of their modelling, concern folding of one layer!
Except for one small paragraph (Section 5.2) and two figures pre-
senting finite element models of two and ten (eight?) layers, with
little discussion, all the theory and modelling in Hobbs et al. (2008)
concern a single layer in a semi-infinite matrix, even when the
words ‘‘single layer’’ are not explicitly stated.

Hobbs et al. (2008) authoritatively claim (Q1): ‘‘Natural folds are
rarely, if ever, strictly periodic; that is, they are rarely characterised by
a single dominant wavelength or a narrow distribution around
a dominant wavelength. A clear example here is the ubiquitous
existence in Nature of parasitic folds’’ (p. 1578). These are bold
statements, unsupported by any references, and they differ from
our own observations in the field. These authors make several
uk (S.H. Treagus), hudle001@
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sweeping statements about folds in ‘‘Nature’’, and yet provide no
justification for using single layer theory to model folding in the
middle to lower crust. In the field, single layer folds of primary
bedding are rare, especially on a large scale. Rocks are stratified
and multilayered; accordingly, folds are usually multilayered.
Where single layer folds do occur in nature, it is typically on
a small scale, in thin rock layers or mineral or pegmatite veins (e.g.
Ramsay and Huber, 1987, pp. 385–393; Price and Cosgrove, 1990,
pp. 277–279); the quasi-periodic nature of folding is clearly
revealed, countering Q1 above. Furthermore, it is a red herring to
include parasitic folds as a reason to question the periodic nature
of single layer folding and the concept of a dominant wavelength,
when there are logical explanations for parasitic folding applying
established theory (Ramberg, 1964; Frehner and Schmalholz,
2006).

2. Wavelength–thickness values of geological folds

Hobbs et al. (2008) make another claim about folds in rocks,
and one that appears to underpin their new approach to folding,
and their criticism of the traditional Biot-Ramberg model. Calling
this quotation (p. 1575) Q2: ‘‘One should note that typical values of
l/h [wavelength/thickness] for real rocks are in a narrow range of 2–7
(see Sherwin and Chapple, 1968; Smith, 1979; Price and Cosgrove,
1990; Johnson and Fletcher, 1994; Patton and Watkinson, 2005, for
reviews).’’ Ignoring the apparent inconsistency with Q1, above, nor
quibbling that their quoted range and Eq. (1) omitted to qualify
that they refer to single layer folds, we will simply argue the facts.
The five citations listed as reviews do not contain a wealth of
rights reserved.
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different datasets from which the summary range of l/h¼ 2–7
could be deduced. Furthermore, none of these publications quotes
this exact range, either as a range of mean values from different
examples, or as the range of all l/h measurements within one
dataset. So where has this narrow 2–7 range come from, especially
the lower value of 2?

The only reference among the five cited in Q2 that gives primary
measurements of wavelength–thickness ratios, strictly arclength/
thickness, is the seminal Sherwin and Chapple (1968) study. Their
data reveal mean l/h values of 4.0–6.8, not 2–7. Most of the Sherwin
and Chapple folds are in quartz veins, 1 mm–1 cm thick, in slate or
phyllite matrix; but similar mean values are found for carbona-
ceous siltstone layers in slate, and for greenish quartzite in phyllite,
where the layers are thicker (w5–16 cm). Let us now examine
published measurements of arclength–thickness of folds that were
not cited by Hobbs et al. (2008), to provide a more representative
survey of folds in rocks.

Shimamoto and Hara (1976, Figs. 9–12) present four histograms
of arclength–thickness measurements for folded quartz veins in
mafic schist, psammitic schist and pelitic schist, with mode values
of 5.5, 8 or 8.5 and 14.5, respectively. The slightly larger mean
values are w7, 10 or 12, and 15, respectively. This 7–15 range is far
from the narrow 2–7 range stated by Hobbs et al. One reason why
the mean values of Shimamoto and Hara are higher than those of
Sherwin and Chapple (4.0–6.8), when the datasets appear to be
lithologically similar (quartz veins in slate, phyllite or schist
matrix), could relate to their higher metamorphic grade and
increased rheological contrasts.

In addition to these two major studies, there are other record-
ings of arclength–thickness ratios in natural folds that we can use to
test the validity of the ‘‘typical’’ 2–7 range claimed by Hobbs et al.
Hudleston (1986, Fig. 7) provides arclength–thickness measure-
ments for 233 folds of calcite veins and limestone beds in slate
matrix. His values range from 2 to 16, with mean and mode slightly
above 7. Ramsay and Huber (1987, Fig. 19.3) illustrate a fold train in
a mm-scale quartz–feldspar pegmatite vein in a biotite-rich granite
host, which forms their Question 19.2, to measure wavelength–
thickness relationships. The rocks here are quite different from all
the previous examples, so make an interesting comparison. Answer
19.2 (Ramsay and Huber, 1987, p. 390–391) shows 35 fold
measurements (half wavelengths) that give a mean wavelength
(arclength)–thickness value of 9.2.

The conclusion from this discussion is that mean arclength–
thickness ratios for recorded single layer folds ‘‘in Nature’’ occupy
a range from 4 to 15 for quartz veins in different host rocks, w7 for
calcite or limestone in slate, and w9 for a pegmatite vein in granite.
The range of 2–7 quoted by Hobbs et al. does not emerge as
representative, either from the five citations they give (Q2), or from
this more comprehensive look at recorded measurements of
natural single layer folds. It is possible that the authors are
confusing discussions of values for real folds with processes dis-
cussed in theory, such as: (a) Smith’s (1979) ‘resonance folding’ in
layers with strongly non-linear rheology, with dominant wave-
length–thickness ratio of 4; or (b) Patton and Watkinson (2005),
who refer to a range of 2.8–5.4 where they are addressing folding in
the lithosphere.

We remain bemused by the lower value of 2, in the range of
l/h¼ 2–7 stated by Hobbs et al. We can find no evidence of single
layer folds with representative arclength–thickness ratios of 2 from
any published studies of folded rocks, nor from any of our own field
observations. However, Hobbs et al. (2008, p. 1584 and Fig. 5) do
have an explanation for l/h¼ 2, in their thermal–mechanical
model: that this value occurs because folds are localised where
shear zones, crossing layers at 45�, intersect top and bottom
boundaries. The important point of conclusion, here, is that we
know of no published evidence for such low values in natural single
layer folds in ‘‘real rocks’’.

3. Adequacy of existing theory

Hobbs et al. (2008) give several reasons for questioning the
adequacy of traditional (e.g. Biot, 1961; Ramberg, 1963; Sherwin
and Chapple,1968; Fletcher, 1974; Smith, 1977, 1979) folding theory.
They claim that growth rates according to this theory are too small
to account for folds with what they state are typical values (2–7) of
l/h, and they claim that fold profiles are less regular than this
theory predicts. We believe both criticisms are unfounded.

As already noted, typical or mean values of l/h are in the range
4–15 rather than 2–7. They can readily be explained by traditional
theory, which accounts for folds with low values of l/h and at low
viscosity contrasts developing as a result of: 1) reduction with
shortening of the preferred wavelength (lP/h) from the Biot
dominant wavelength (lB/h) (Sherwin and Chapple, 1968); and 2)
sufficient amplifications at low values of l/h for low viscosity
contrasts if the layers follow non-linear flow laws (Fletcher, 1974;
Smith, 1977). As an example, folds with lP/h¼ 7 can be produced in
a layer following a power law with n¼ 3 and with a viscosity ratio
of about 10 (see Fletcher, 1974, Fig. 5). This involves an amplification
of 40 and a layer shortening of about 20% to bring the folds from
their initial state to limb dips of about 15�, at which stage the linear
theory of fold initiation ceases to apply and other processes take
over as the folds grow to large amplitude (Sherwin and Chapple,
1968; Hudleston, 1973; Fletcher, 1974; Schmalholz and Podladchi-
kov, 2000; Schmalholz, 2006). All of the above values seem to us
realistic.

On the questions of the regularity of fold profiles, Hobbs et al.
(2008) make statements about traditional theory that are at best
misleading. They state that according to Biot’s theory, (Q3A) ‘‘one
wavelength of perturbation, lB, given by equation (1) below, grows
preferentially and at an exponential rate; all other perturbations grow
relatively slowly. This system is unstable with respect to perturbations
of wavelength, lB, and the instability exists from the instant the
deformation begins’’ (p. 1574). Two paragraphs further on they say,
(Q3B), ‘‘The common result of all such treatments, if the layer or the
embedding materials are elastic, linearly viscous or power law viscous,
is that just one particular wavelength (the dominant wavelength) is
amplified.’’ One might deduce from these statements that the
instability only exists for perturbations of wavelength, lB, when in
fact for viscous media (although not elastic) there is instability for
all wavelengths, and all grow at an exponential rate. It is just that
the dominant wavelength, lB, initially grows fastest. There exists,
for each set of rheological conditions and given amount of layer
shortening, an amplification spectrum, as shown by Sherwin and
Chapple (1968) and Fletcher (1974). Because of this, one would
expect a fold train to emerge with a profile that results from the
superimposition of the amplification spectrum upon a spectrum of
initial layer interface irregularities. Fletcher and Sherwin (1978)
and Mancktelow (1999), among others, have explored the rela-
tionship between amplification spectra and the spectra of observed
finite fold wavelengths. The point is, traditional theory would lead
one to expect natural folds to show a spectrum of l/h (or arclength/
h) with a spread of values and a fairly well-defined maximum, as is
observed in nature (Sherwin and Chapple, 1968, Fig. 2; Hudleston,
1986, Fig. 7). This is also true for analogue models (Hudleston, 1973)
and numerical simulations (Mancktelow, 1999; Schmalholz, 2006).

4. How geologically realistic are these models of folds?

The single layer model of Hobbs et al. (2008), termed interme-
diate scale, represents a 13.2� 3 km block of rock, comprising
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a quartz rock matrix that contains a central 300 m thick feldspar
layer. The scale of this example, and the two ‘rocks’ chosen for the
layer and matrix, bear no resemblance to any natural single layer
folds described in the studies cited above. Where on Earth might
one find an enormous single layer fold of a feldpathic layer within
a vast quartz matrix? Even if the question of scale is disregarded, it
is not explained why the authors chose feldspar for the rheology of
the single layer, when all the geological evidence for single layer
folding in rocks, including studies cited by Hobbs et al., suggest that
quartz is a more likely analogue for a folding layer, than for its
matrix. Hobbs et al. also state that their thermal–mechanical
coupling folds have wavelengths ranging from 100 s to 1000 s of
metres, which is clearly a different scale from most examples of
single layer folds ‘‘in Nature’’, as discussed in the preceding
sections.

Nevertheless, in their Discussion, Hobbs et al. claim (Q4A): ‘‘We
have shown that a large range of realistic structures arises through
thermal mechanical coupling.’’ They elaborate that their folding
process is different from the Biot buckling process, their folds
being the result of localised shear zones and thermal softening. In
the Conclusions, they state (Q4B): ‘‘The intersection of these shear
zones with layers produces localised areas of weakening that repre-
sent embryonic hinges that then buckle. The structures are realistic in
that folds develop at a number of wavelengths, are of Type 1A or Type
3 at high strains and have axial plane structures well developed.’’
These two statements clearly imply that the authors think their
structures are geologically realistic, and yet they are totally
unsupported by any geological evidence or examples. It is unclear
why class 1A or class 3 fold geometry (Ramsay 1967, p. 365) is
considered relevant, since most natural single layer folds are
approximately class 1B; classes 1A and 3 are indicative of folding in
incompetent layers surrounding buckling layers (e.g. Hudleston,
1986, Fig. 8A). No information or examples are presented to prove
the assertions in Q3.

The coupling of thermal and mechanical processes in nature is
certainly important, and it is encouraging to see Hobbs et al.
exploring the implications of models of such behaviour for folding.
Their thermal–mechanical model produces fold-like structures,
and may have applications to the deformation of some materials,
under certain conditions; but they have not demonstrated that
their model produces realistic structures in crustal rocks under
realistic conditions. The folds illustrated by Hobbs et al. (2008) do
not resemble the countless folds, in single layers or multilayers, in
sedimentary or metamorphic rocks, that we have observed in the
field or seen illustrated in this Journal. Many folds in naturally
deformed rocks are regular and quasi-periodic; they are well
modelled by Biot-Ramberg sinusoidal buckling theories and their
refinements, by a wide range of analogue model materials, and by
a range of numerical or finite element models; all without need for
coupled thermal–mechanical feedback.
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